
Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Secure Function Evaluation vs. Deniability
In OTR and Similar Protocols

bruhns, greg

Berlinsides 2012

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

What and why?

OTR is a popular cryptographic protocol.

It features a number of properties, such as confidentiality,
integrity and also deniability.

We’re going to focus on the deniability aspect of the protocol.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

TOC

1 Introduction

2 OTR

3 Deniability

4 Secure Function Evaluation

5 Putting It All Together

6 The End

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OTR

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OTR

Off-the-Record Messaging

Cryptographic protocol for instant messaging

Interesting properties

Confidentiality
Integrity
Forward Secrecy
Mutual authentication using SMP
Deniability

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties

General setting: Alice ↔ Eve ↔ Bob

Confidentiality & Integrity

Eve cannot decipher any of Bob’s or Alice’s messages. Neither can
she modify any of those messages (without Alice or Bob noticing
that).

Forward Secrecy

Suppose Alice looses her private key. Eve should not be able to
decipher any messages that has already been sent in a prior
conversation between Alice and Bob.

Mutual authentication

Alice and Bob can authenticate each other.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties

General setting: Alice ↔ Eve ↔ Bob

Confidentiality & Integrity

Eve cannot decipher any of Bob’s or Alice’s messages. Neither can
she modify any of those messages (without Alice or Bob noticing
that).

Forward Secrecy

Suppose Alice looses her private key. Eve should not be able to
decipher any messages that has already been sent in a prior
conversation between Alice and Bob.

Mutual authentication

Alice and Bob can authenticate each other.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties

General setting: Alice ↔ Eve ↔ Bob

Confidentiality & Integrity

Eve cannot decipher any of Bob’s or Alice’s messages. Neither can
she modify any of those messages (without Alice or Bob noticing
that).

Forward Secrecy

Suppose Alice looses her private key. Eve should not be able to
decipher any messages that has already been sent in a prior
conversation between Alice and Bob.

Mutual authentication

Alice and Bob can authenticate each other.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties

General setting: Alice ↔ Eve ↔ Bob

Confidentiality & Integrity

Eve cannot decipher any of Bob’s or Alice’s messages. Neither can
she modify any of those messages (without Alice or Bob noticing
that).

Forward Secrecy

Suppose Alice looses her private key. Eve should not be able to
decipher any messages that has already been sent in a prior
conversation between Alice and Bob.

Mutual authentication

Alice and Bob can authenticate each other.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties

General setting: Alice ↔ Eve ↔ Bob

Deniability

Both, Alice and Bob are hackers and talk about serious stuff (TM)
using OTR. Now Alice turns evil and wants to backstab on Bob.
Debiability means that Alice can not prove that Bob was really the
author of any message he sent (yet, during the conversation Alice
is still sure that she talks to Bob).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Key Exchange & Message Crypto

Simplified version of the protocol:

Each party has an asymmetric key pair, which we’ll call
master key

Use Diffie-Hellman to establish a common set of encryption
and authentication keys. Alice and Bob sign their
Diffie-Hellman messages with their master keys.
→ Authentication and Forward Secrecy
→ Deniability (weak)

Messages are encrypted (AES-CTR) and MACed (HMAC)
using the symmtric keys that have been generated.
→ Confidentiality and integrity

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Key Exchange & Message Crypto

Each message contains a new DH key exchange proposal (also
MACed of course). As soon as new keys have been
established, the old MAC keys are made public.
→ Deniability (strong)

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Re-Keying

Both parties frequently re-key the symmetric primitives.

The re-keying procedure is significantly simpler than the initial
key-exchange - we already have key material exchanged.

General approach: Perform a DH key-exchange and use
already established MAC keys to authenticate the
communication.

Advantage: We can publish the “old” MAC keys, as they are
not longer used. We will not disclose our encryption keys,
though!

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

How could Alice attack Bob’s deniability?

+-------+ "I pwn3d XYZ", sig(..) +-------+
| Alice | <-----------------------> | Bob |
+-------+ +-------+

^
| "Bob pwn3d XYZ, here’s a proof" +-------+
+---------------------------------> | Judge |

+-------+

Simple offline attack

Bob will argue that Alice just made up the signature. She can do
that, because OTR is deniable (more on that later).

But Alice might try something else. . .

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

How could Alice attack Bob’s deniability?

+-------+ "I pwn3d XYZ", sig(..) +-------+
| Alice | <-----------------------> | Bob |
+-------+ ^ +-------+

^ |
| +---- Sniff ------------+
| |
| "See? Bob really said he pwn3d XYZ." +-------+
+------------------------------------> | Judge |

+-------+

If the judge sniffs all traffic, he knows that Bob said. Alice can give
him the encryption/MAC key and he can verify that.

Hard to implement (especially if Alice/Bob use an anonymizer).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

How could Alice attack Bob’s deniability?

+-------+ +-------+
| Alice |<-+ +->| Bob |
+-------+ | | +-------+

| |
v v
+-------+
| Judge |
+-------+

Online attack: Alice forwards all traffic to the judge. Also won’t
work: Bob will again argue that Alice faked the messages.

Alice gives her master key to the judge, who will act as a proxy for
Alice. He will read all messages, check integrity and authentication.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

How could Alice attack Bob’s deniability?

+-------+ +-------+
| Alice |<-+ +->| Bob |
+-------+ | | +-------+

| |
v v
+-------+
| Judge |
+-------+

But now the judge can impersonate Alice and Alice doesn’t really
trust the judge.

What if there was a party that both, Alice and the judge, trust?

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

How could Alice attack Bob’s deniability?

+-------+ +-------+
| Alice |<-+ +->| Bob |
+-------+ | | +-------+

| |
v v
+----------------+ +-------+
| Alice’s Lawyer | <---> | Judge |
+----------------+ +-------+

Alice just gives her master keys to her lawyer.

That looks pretty good. But Alice has some doubts. . .

Does the judge really trust her lawyer?
Worse: does she really trust her lawyer?

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

How could Alice attack Bob’s deniability?

+-------+ +-------+
| Alice |<-+ +->| Bob |
+-------+ | | +-------+

| |
v v
+----------------+ +-------+
| Alice’s Lawyer | <---> | Judge |
+----------------+ +-------+

Lucky us: We’re all paranoid and there is no trusted third party.

Alice’s goal: get rid of the lawyer!

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Deniability

There are actually two concepts of deniability: weak and
strong deniability.

Weak deniability: If one party discloses a message sent by the
other party, the other party can claim that the message was
actually faked by the disclosing party.

Strong deniability: If a message gets disclosed, each party can
claim that anybody could have faked that message.

Weak deniability is pretty obvious: both parties are in
possession of encryption and MAC keys, so there is no way to
distinguish who actually sent a message.

Attacks can be offline (observer not involved in the
conversation) and online (observer is involved in the
conversation).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Strong Deniability

That’s a bit harder. The main idea here is that after each
re-keying, the old MAC keys are disclosed.

In order to fake a message, we need to know two things: MAC
key (is public) and encryption key. The encryption key is never
disclosed to the public, because that would violate the
confidentiality.

But using the MAC key, we can create a fake re-keying event,
so that encryption and MAC keys are generated, which we
know.

Now we can forge any message transcript.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

What Does OTR Offer?

OTR claims strong deniability.

Deniability does not protect against someone who was evil
right from the beginning! Such individuals could just share
their master keys with any agency.

If they are able to sniff your traffic, you’re screwed, too: they
know, which messages you sent.

But sniffing each and every network communication doesn’t
scale well. Also, if your peer wasn’t evil right from the
beginning, we cannot assume a trust relation between him and
the attacker(s).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Secure Function Evaluation

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Secure Function Evaluation

Remember: Alice wanted to get rid of the lawyer. Doesn’t
look like an easy task.

But isn’t there any way to “emulate” that trusted third party?

Crypto teaches us the surprising result: there actually is!

It’s called Secure Function Evaluation (SFE).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

SFE

A method for securely computing f (x , y), where you know x ,
your peer knows y and neither you nor your peer want the
other to learn x or y .

Different approaches for implementing SFE

(Partially) homomorphic cryptosystems
Yao’s Garbled Circuits

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Oblivious Transfer

Bob knows two values, x0 and x1. He is willing to share
exactly one with Alice.

Alice wants one of those values, but doesn’t want to tell Bob,
which one she wants.

This problem is solved by oblivious transfer.

There are many OT schemes out there, often based on
trapdoor one-way functions. You can imagine those as
instances of RSA, where f is the encryption function and f −1

the decryption function (keys are fixed).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OT: Compact Version

Bob knows x0 and x1, Alice wants to receive one of them (xb with
b ∈ {0, 1})
A B

Pick f , f −1, r0, r1
f ,r0,r1←−−−−−−−−−−−−−−−−−

Pick k

compute z = f (k)
z=f (k)⊕rb−−−−−−−−−−−−−−−−−→

Compute candidates

k0 = f −1(z ⊕ r0) and k1

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

General OT Approach

Bob choses f , f −1 (trapdoor one-way!) and sends f to Alice.
Also, Bob picks two random values r0 and r1, which he also
sends to Alice.

Alice wants to retrieve value xb from Bob. She first generates
a random value k and computes z = f (k)⊕ rb, which she
sends to Bob.

Bob computes k0 = f −1(z ⊕ r0) and k1 = f −1(z ⊕ r1). He can
be sure that one of those k values is correct and the other one
is junk. He computes x ′0 = x0 ⊕ k0 and x ′1 = x1 ⊕ k1, which he
sends to Alice.

Alice receives x ′0 and x ′1, but she can only decrypt one of
them, because she only knows one k value.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

GC SFE

Evalution of boolean circuits (non-uniform computation)

Functions can be modeled as circuits.

That’s what happens when you program an FPGA.

A circuit consists of gates and wires connecting those gates.

Alice and Bob agree on a circuit. Alice “garbles” it and Bob
evaluates the garbled circuit.

Gates can be represented by their truth tables. For example:
0 1

0 0 0
1 0 1

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Garbling a Gate

Main idea: replace the binary inputs by (long) random strings.
Instead of 1 or 0, we use keys like 350d5ea01e8a1f407cf or
763581eb6cea7ec4b9a6e.

Pick such random keys for each value of each wire (if we have
inputs a and b, we’ll call the keys ka0, ka1, kb0 and kb1).

Encrypt the truth table of the gate using the generated keys.
Pick an encryption function E , decryption function D. Let D
be built in such a way that it will complain if wrong keys are
used (instead of just decrypting junk).

0 1

0 0 0
1 0 1

→
0 1

0 Eka0(Ekb0
(0)) Eka1(Ekb0

(0))
1 Eka0(Ekb1

(0)) Eka1(Ekb1
(1))

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Garbling a Circuit

Out
|

+------+
| G1 |
+------+
| |

In_3 | |
| |

+---+ In_4
|G2 |
+---+
| \
In_1 In_2

When you have the input keys, just try to
decrypt all entries in a garbled gate until
one operation succeeds.

In1, In2 and In4 are known (will cover that
later)

But where to get In3 from? Simple trick:
We put the key In3 into the garbled table
of G2.

0 1

0 Eka0(Ekb0
(In30)) Eka1(Ekb0

(In30))
1 Eka0(Ekb1

(In30)) Eka1(Ekb1
(In31))

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Evaluating a GC

Where to get the input keys from?

Alice can hard-code her inputs into the circuit when garbling
it.

Bob however doesn’t know the keys for his inputs.

Bob could just ask Alice to give him the keys for his input
values. But either he tells Alice what his input values are or
Alice gives him the keys for all input values. Neither is
acceptable.

Solution: Oblivious transfer

After Bob obliviously received his garbled input values, he
evaluates the circuit, sends the result over to Alice and Alice
de-garbles it.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Putting It All Together

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

The Attack Idea

SFE can be used to emulate a trusted third party.

That is: Instead of letting a trusted third party compute some
function for us, we can just do that ourselves and still have
the same security properties.

Use SFE to emulate a trusted third party: Somehow (TM)
share our keys with that “third party”.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Sharing is Caring

We want to backstab our peer, therefore we collaborate with
an observing party O (a.k.a. the judge or simply them).

We keep our asymmetric master keys for ourselves.

But every DH key exchange, we compute together with O.
The resulting MAC keys are shared between O and us (i.e.
neither O nor we know the keys, details later).

The encryption keys are only known to us (otherwise, O could
learn the plain text).

To verify a message’s integrity, we collaborate with O. For
signing a message, we also collaborate with O.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Recap: Diffie-Hellman

A and B publicly agree on a prime p and a generator g of a
large cyclic subgroup of Zp.

A picks a random a, computes ga. Same for B.

A and B exchange ga and gb, but keep a and b secret.

A computes k = (gb)a, B computes k = (ga)b. Both keys are
the same k = gab = gba.

An attacker cannot compute gab from ga and gb alone
(Diffie-Hellman problem).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

The Attack Implementation

Cooperative key-exchange: consider three parties A, B and O
(Alice, Bob and the observing party). A and O cooperate.
O A B

ga

←−−−−−−−−−−−
go

−−−−−−−−−−−→
gao

−−−−−−−−−−−→
gb

←−−−−−−−−−−−
B now knows gabo , but neither A not O can compute that
value.

Proof idea: A knows gb, go and a. Computing goab ↔
computing gbo , equivalent to the Diffie-Hellman problem.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

The Attack Implementation

No SFE up to here!

A and O both know gb. With their private exponents, A and
O can compute gabo . But A and O don’t want to share a and
o.

From gabo , A and B can compute the encryption and MAC
keys (those are generated by hasing gabo in various ways).

The function that A and O want to compute is
f (a, b) = (kE , kM) = (HASHE (((gb)a)o),HASHM(((gb)a)o)).

Inputs of the function are the private exponents a and o.

The circuit for that is rather big. . .

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Cleanup

But now O knows the MAC key and could impersonate A and
B. . .

Fix: A has to get kE and A, O have to share kM !

Easily possible by using a circuit that blinds some of its outputs
with a key only known to one party: The circuit takes an
additional input x and instead of kM it really computes kM ⊕ x .
A will know kx := kM ⊕ x and O will know x .

For every MAC computation, A and O will jointly compute
f (kx , x ,m) = HMAC (m, kx ⊕ x).

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

The Big Picture: Key Exchange

O A B
go

−−−−−−−−−−−−−−−−−→
ga

←−−−−−−−−−−−−−−−−−
gao

−−−−−−−−−−−−−−−−−→
gb

←−−−−−−−−−−−−−−−−−
f ,r0,r1←−−−−−−−−−−−−−−−−−

z=f (k)⊕rb−−−−−−−−−−−−−−−−−→
x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−

...
C←−−−−−−−−−−−−−−−−

eval(C)=kE ,kM⊕x−−−−−−−−−−−−−−−−−→
Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

The Big Picture: Message Exchange

O A B
E(m),HMAC(E(m))←−−−−−−−−−−−−−−−−−

C ,f ,r0,r1←−−−−−−−−−−−−−−
z=f (k)⊕rb−−−−−−−−−−−−−−−−→

x0⊕f −1(z⊕r0),x1⊕f −1(z⊕r1)←−−−−−−−−−−−−−−−−−
...

eval(C)=HMAC(E(m))−−−−−−−−−−−−−−−−−−−→

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties of Our Scheme

O will never see any plain text, so confidentiality stays.

Without our help, O cannot sign or verify any message, so
integrity also stays intact.

Forward secrecy also remains OK, because O won’t learn any
decryption keys anyway.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Security Properties of Our Scheme

But deniability is gone: As we need the help of O to verify the
messages of our peer, O learns about the integrity of the
messages at the same time as we do.

Messages that are created afterwards will be rejected by O,
just because O has not seen those during the conversation.

Even worse: We can selectively disclose any message content
to O, just by telling O the decryption key for that particular
message!

This scheme can be extended to other protocols as well!

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

What’s the Benefit of Our Scenario?

No trust relationship with O is required (on no side).

O doesn’t have to sniff anything.

You don’t have to disclose everything you or your peer said.

No “evil” intentions required.

People might use it as a defense: “just to be sure.. if my peer
turns evil at some point in time then I’ll disclose everything he
said!”

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Closing remarks

“So who is that obverving party?”

They might be the NSA or anybody else.
Probably the adversary you’re most afraid of.

“Yeah, but you know what: they still cannot prove anything to
(yet) another party. And in my country, you actually need to
prove stuff in court!!1”

Might be (are you sure?)
But what if they are the judges / the jury?

Cooperating “just to be safe” → prisoners dilemma

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Implementation Considerations

A real-world implementation would be more complicated
(OTR has some restrictions that we left out) but can be done.

You need some SFE framework (try TASTY and/or Fairplay).

SFE comes with some performance impact, so think about

additional optimizations.

Also, some SFE schemes are by default only secure against
honest-but-curious attackers. Need to add zero-knowledge or
other tricks to improve that.

For additional details, please check out our article in Phrack
#68.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

OTR Related Details

OTR mandates kM = Hash(kE ), so A is not allowed to know
kE . Can be solved by also sharing kE with O and cooperating
for encryption and decryption.

A needs to convince O that she doesn’t do re-keyings that O
doesn’t know about (can be done by using zero-knowledge
proofs).

OTR mandates you should publish your MAC keys when you
won’t use them anymore. The current implementation doesn’t
check that but if it would, we’d also need to do that
cooperatively.

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Optimizing DH

Computing modular exponentiation is expensive. Even more
so in a circuit. Fortunately, DH can be tweaked, so that we
only need to do a multiplication in SFE.

A picks some random value j and does the following:
O A B

gb

←−−−−−−
gab+j

←−−−−−−−−−−−−
go

−−−−−−−−−−−→
O computes (gab+j)o = gabo+jo

A computes g−jo (trivial to invert g j)

Using SFE, A and O compute gabo = gabo+jo · g−jo

Secure Function Evaluation vs. Deniability



Introduction
OTR

Deniability
Secure Function Evaluation

Putting It All Together
The End

Questions?

Get in touch:
Mail: ping@gregorkopf.de, twitter: teh gerg
Mail: bbrehm@math.fu-berlin.de, twitter: bruhn5

Secure Function Evaluation vs. Deniability


	Introduction
	OTR
	Deniability
	Secure Function Evaluation
	Putting It All Together
	The End

